Category: UAE

12 Jan 2022

Sheikh Mohammed has issued a law on expropriating property for public use in Dubai market

Law outlines procedures for expropriation, calculating compensation, and appeal

The law also creates an ‘Expropriation Committee’ to oversee all matters related to expropriation of property. The chairman of the Dubai Ruler’s Court will issue a decision on the formation of the committee, its members, decision-making processes and expropriation procedures.

Dubai: A new law regulating procedures for expropriating property for public use in Dubai has been issued.

His Highness Sheikh Mohammed bin Rashid Al Maktoum, Vice President and Prime Minister of the UAE, in his capacity as the Ruler of Dubai, issued Law No. 2 of 2022 on the expropriation of property for public use in the emirate.

The law aims to ensure that the rights of owners of expropriated property are protected and that they are afforded full and fair compensation as per a clear set of rules outlined by it.

According to Ashu Sood, director of Brisk Avenue Dubai, the provisions of the law will apply to the expropriation of property across Dubai. The law, which covers special development zones and free zones including the Dubai International Financial Centre, regulates the terms and conditions under which buildings and facilities can be expropriated, including those that are completed and under construction. It also sets out the terms for providing compensation to the owners whose properties are expropriated, as per a decision issued by the chairman of the Dubai Ruler’s Court.

According to the law, if only a portion of a property is expropriated and the remaining part becomes unfit for use as per Dubai’s construction rules and regulations, full compensation will be provided if the owner does not want to retain it to add it to an adjacent property.

The committee is tasked with reviewing requests for expropriation including requests to assess the viability of expropriating a property to meet the objectives of a project. The committee may propose alternatives to expropriating a property for a project, including land grants. It will also assess whether a proposed project requires full or partial expropriation and evaluate the compensation for expropriated property.

Orders issued by Sheikh Mohammed to expropriate property in Dubai supersede the authority of the committee.

In case the expropriation affects a property that belongs to a local or federal government entity, compensation will be provided as per legislations and procedures approved by the committee.

Expropriations of property conducted before the issuance of the new law should follow all procedures and provide compensation as per previously existing terms and conditions within a year of the effective date of the new legislation. The chairman of the Dubai Ruler’s Court is authorised to extend the deadline by six months. If the deadline is not met, compensation will have to be provided under the terms of the new law.

The law outlines comprehensive procedures for expropriation of property, calculating the value of compensation, and appealing against the expropriation.

The new law annuls clauses of the resolution issued on January 1, 1964 regulating expropriation of private property for public use. The law also annuls any other legislation that may contradict it.

23 Mar 2021

Which Countries Are Leading the Data Economy?

Which countries are the top data producers? After all, with data-fueled applications of artificial intelligence projected, by McKinsey, to generate $13 trillion in new global economic activity by 2030, this could determine the next world order, much like the role that oil production has played in creating economic power players in the preceding century.

While China and the U.S. could emerge as two AI superpowers, data sources can’t be limited to concentrations in a few places as we have with an oil-driven economy — it needs to be drawn from many, diverse sources and future AI applications will emerge from new and unexpected players. The new world order taking shape is likely to be more complex than a simple bi-polar structure, especially since data is being produced at a pace that boggles the mind.

Building on our past work mapping the digital evolution and digital competitiveness of different countries around the world, we wanted to try to locate the deepest and widest pools of useful data. This is essential to run the myriad machine learning models critical to AI. To do so, it is useful to make a distinction between the raw volume of data and a measure that we shall call “gross data product” – our version of the new GDP. To identify the world’s top “gross data product” producers, we propose using four criteria:

  1. Volume: Absolute amount of broadband consumed by a country, as a proxy for the raw data generated.
  2. Usage: Number of users active on the internet, as a proxy for the breadth of usage behaviors, needs and contexts.
  3. Accessibility: Institutional openness to data flows as a way to assess whether the data generated in a country permits wider usability and accessibility by multiple AI researchers, innovators, and applications.
  4. Complexity: Volume of broadband consumption per capita, as a proxy for the sophistication and complexity of digital activity.

There are several nuances to note. For one, we recognize that the digital trace that is generated by computers around the world spans a very wide range of activities, from sending an SMS text message to making a financial transaction. To enable an apples-to-apples comparison across the world, we use broadband per capita as a measure of such breadth and complexity (in some ways, mimicking the use of per capita income as a proxy for overall prosperity).

Second, there are differences across countries in terms of how private data is shared across agencies and whether there are digital identity frameworks that can help connect individuals to their digital activities. These institutional factors could make a difference to how data could eventually be pieced together. We do not call out these distinctions. We chose the countries included in our analysis based on a few considerations: 1) Countries that are the most significant contributors to the global digital economy either because they are high on our earlier digital evolution index score or because they have strong momentum in their digital activities; 2) Countries that represent a reasonable spread in terms of region and socio-economic position; and 3) Countries that provided us with a solid data and evidence base to do the analyses.

Finally, an important consideration in determining accessibility is privacy. Privacy concerns and data protection regulations can help or hinder the abilities for algorithms to develop new capabilities. We take the position for this analysis that an established framework for ensuring privacy and data protection and openness to the mobility of data is a net benefit and a positive contributor to the development of AI over the long term. As an example, consider the problem of fraud detection in financial transactions. Applications that draw upon insights from diverse geographic locations and multiple usage contexts help establish patterns of trustworthiness and help flag security risks; such applications benefit from systems that meet the accessibility criterion. That said, we acknowledge that in the near-term there could be some countries – China being the pre-eminent example – where data-sharing between public and private sector agencies with very little mobility beyond the national borders could violate privacy and openness norms and yet yield a temporary advantage in training algorithms inside a “walled garden.”

Which of these criteria should be used in assessing a potential new world order, based on data? We believe accessibility should remain a foundational criterion.  If one were to take the point of view that the biggest and highest impact AI applications are the ones that serve the greatest public purpose, access to data is key. In its recent study of AI for the public good, McKinsey cites access as one of the principal barriers: of the 18 bottlenecks identified by McKinsey, six relate to data availability, volume, quality, and usability.

This chart below shows what happens when the 30 countries we studied were mapped using two of our criteria:

While the U.S. scores well on all three criteria – and this might seem counter-intuitive to prevailing wisdom — China operates with a handicap if global accessibility of the data is considered essential for creating successful AI applications in the future. If the EU (currently including the UK) were to act as a collective, it represents a key producer that could rival the U.S. Besides, China, other BRIC nations, Brazil, India, Russia, could emerge as strong tier two contenders, largely on the strengths of raw data they produce; however, they too would be handicapped by accessibility concerns.

A different set of implications emerge for smaller countries, such as New Zealand, or those unaffiliated with larger economic unions, such as South Korea, but with high openness and mobility in data flows; such countries would benefit from establishing trade agreements in data with other “open” countries and thereby overcome their natural limitations, either in terms of number of users or in terms of total broadband consumed within the country. The forms such trade or data-sharing agreements might take is yet to be determined; however, we can envision that they could be a distinct possibility especially when we recognize that gross data product has value just like any other product that is freely traded today.

Of course, the direction of high-value AI applications is still emerging. There is also a risk of AI itself being over-hyped, misunderstood, and set up for disappointments down the road. But it’s clear that many important applications are already in use and more are coming. Our analytical framework is flexible enough to account for such fluidity. If we use a different set of criteria as being more relevant for driving successful AI applications, we find a different picture emerging. The chart below offers one such possibility, where only complexity and accessibility are considered.

When viewed in this manner, there is a more linear structuring of this “new” data-driven world order. The high broadband consumption per capita and institutionally open countries (in the top right hand portion of the graphic) emerge as the clear winners. One can imagine a scenario where the high complexity and mobility of data flows in the top-right of the graphic allow for a more productive “free-trade” zone, where countries mutually benefit from tapping into each other’s data reservoirs.

Finally, we considered a scenario where all four criteria ought to be considered important. If we assign equivalent weights to all four, a ranking of “new” data  producers and an updated world order emerges.

1. United States

2. United Kingdom

3. China

4. Switzerland

5. South Korea

6. France

7. Canada

8. Sweden

9. Australia

10. Czech Republic

11. Japan

12. New Zealand

13. Germany

14. Spain

15. Ireland

16. Italy

17. Portugal

18. Mexico

19. Argentina

20. Chile

21. Poland

22. Brazil

23. Greece

24. India

25. South Africa

26. Hungary

27. Malaysia

28. Russia

29. Turkey

30. Indonesia

Of course, these segmentations provide insight into where the major data producers are based on a set of assumptions about what will be important for the highest-value applications in the future. Our purpose was to acknowledge the uncertainties and show how alternative assumptions yield different scenarios for the world order. A different segmentation and ranking would emerge if were to ask a different set of questions focused on the outcomes, such as economic or geopolitical value through AI that might be assigned to each country or how countries rank in terms of ease of doing digital business currently as they prepare for such a future. We are developing these in future research projects.

Data is the fuel of the new economy, and even more so of the economy to come. In declaring back in 2017 that the world’s most valuable resource is no longer oil, but data, The Economist said: “Whether you are going for a run, watching TV or even just sitting in traffic, virtually every activity creates a digital trace — more raw material for the data distilleries.” Algorithms trained by all these digital traces will be globally transformational. It’s possible that a new world order will emerge from it, along with a new “GDP” — gross data product —that captures an emerging measure of  wealth and power of nations.  It is time we identified what the field looks like now that new competitive and collaborative opportunities are developing.